
Skim Lesson 3 in your book. Read the headings, and look at the photos and illustrations. Identify three things you want to learn more about as you read the lesson. Write your ideas in your Science Journal.

Main Idea	Details
Acceleration—Changes in Velocity I found this on page	Define acceleration. acceleration:
riouna triis on page	
I found this on page	Identify 3 ways that an object can accelerate.
	2
	3
I found this on page	Describe the acceleration of a car in each situation.

	Description
Leaving an intersection	
Approaching an intersection	

I found this on page _

Draw arrows to show the direction of velocity and acceleration as the toy car moves along the track. Use one color to show velocity and another color to show acceleration.

KEY acceleration velocity

Lesson 3 | Acceleration (continued)

--- Main Idea --- |----- Details -----**Calculating Acceleration Define** average acceleration, and complete the equation for I found this on page _____ calculating it. average acceleration: Average Acceleration Equation: **Identify** *each variable in the equation*. I found this on page _____. average acceleration: _____ final speed: _____ initial speed: _____ **Solve** *for* average acceleration. I found this on page ______. A rocket accelerates from 0 to 20 km/s. Five seconds after reaching 20 km/s, the rocket is traveling at 280 km/s. What is the average acceleration of the rocket? initial speed: _____ final speed: _____ total time: _____ What is the average acceleration of the rocket? _____ **Determine** *the direction of* motion *of two objects.* I found this on page _____. Time (s) Average Acceleration (m/s)

Time (s)	Average Acceleration (m/s)
0	0
1	2
2	4
3	6
4	8

Direction of motion:

0

-2

-4

-6 -8

0

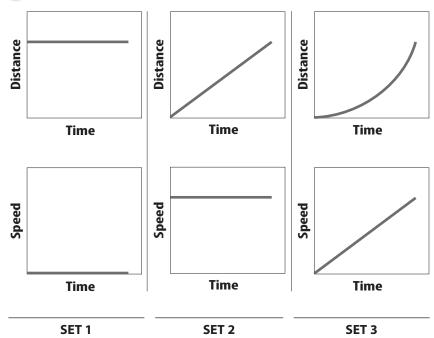
1

2

3

Direction of motion:

--- Main Idea --- Details

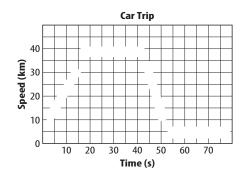

Speed-Time Graphs

I found this on page ___

I found this on page _____

Explain what a speed-time graph indicates about an object's motion.

Describe *the* motion *represented by each set of graphs.*


SET 3. _____

Summarizing Motion

I found this on page ____

Summarize *five ways* motion *can be described*.

Synthesize It Draw a graph to show a car that starts from rest, accelerates to 35 km/h in 20 seconds, travels at a constant speed for 20 seconds, slows to a stop in 10 seconds, and remains at rest for 20 seconds. Label acceleration during each time period.

